Duvas Technologies Archives - Duvas Technologies Ltd

Duvas Technologies welcomes Dr. Ebénézer Tetsi to the team.

By | News

We are happy to welcome Dr. Ebénézer Tetsi to Duvas Technologies to join our team of Technical Engineers. Eb as he likes to be known obtained his PHD in the search for new thermoelectric and magnetic oxide materials using experimental and computer modelling techniques. Since he completed his PHD he has worked in the gas analysis industry. Eb will be a great addition to the team as we focus to  build more DV3000’s and develop Duvas Technologies. Outside of work he spends is spare time enjoying folk music, being a scout leader and playing football.

It’s Been a Busy Start to 2020

By | News

It has been a busy start to 2020…
The first DV3000 has just been shipped from cold and wet Banbury to the much warmer climes of the U.A.E. Its use in Ajman will aid enforcement teams in detecting pollution from industrial areas that are close to residential districts with particular attention to BTEX, of which Benzene is a known carcinogen. Their team visited the UK this week to undergo training at our head office to fully understand the functionality of the DV3000 and how to best deploy the real-time mobile gas analyser.

For further information on how Duvas Technologies can help with your monitoring needs contact us at enquiries@duvastechnologies.com.

#benzene #cleanair

Why accurate reporting is key to tackling global air quality

By | News

With startling insight from the University of Innsbruck reporting that real-world VOC pollution levels are higher than previously believed, Steve Billingham, CEO of Duvas Technologies, discusses what this means for global air quality.

It seems that barely a week goes by without damning news concerning poor air quality. From California to Nepal, smog, haze and pollutants in the atmosphere are damaging human health. But, according to a new academic study from Austria, levels of volatile organic compounds (VOCs) are even higher than previously believed.

The study, undertaken by researchers at the University of Innsbruck and published in the Proceedings of the National Academy of Sciences (PNAS), has revealed the world’s first fingerprint of urban emission VOC sources. The research team examined emissions from transport, solvents and smoking, identifying benzene and toluene gas compounds within the list of most prevalent toxic solvents.

While a significant breakthrough in terms of air quality understanding, the study also revealed that VOC levels are much higher than previously believed. The impact should not be under-estimated. VOCs – key compounds in the makeup of smog – have highly negative implications to public health.

As with any toxin, health effects vary depending on exposure level and duration. While short-term exposure can lead to headaches, visual problems, fatigue and respiratory tract irritation, long-term exposure (even in small concentrations) can cause liver, kidney and central nervous system damage.

Yet, according to the World Health Organization, 92% of the world’s population live in places where air quality guidelines levels are not met. More shocking still when we consider proven links to more than three million premature deaths worldwide in 2012.*

Air quality must clearly rise further up the global priority list but, moreso, accurate monitoring and reporting. If we fail to understand the true magnitude, implementing solutions to minimise impacts will be unachievable.

Fortunately, there have been major advances in the development of air quality monitoring technology – in particular, when it comes to the accurate detection and reporting of VOCs. Alongside proven photoionization detection and gas chromatography technology, advances in UV Differential Optical Absorption Spectroscopy (UV-DOAS) are delivering new levels of precision and flexibility.

Next-generation monitoring solutions, such as the Duvas DV3000, can quickly and clearly analyse gas type and concentration to within parts per billion (ppb) levels. The system is already being used by companies across the petrochemicals industry to deliver fast, accurate, real-time benzene data. However, with the capability of monitoring for up to 13 additional species, its application can play a far wider part in the global air quality market.

Until we unify global legislation, potentially learning from best practice examples from forward-thinking areas such as California, which – as the most polluted State in the USA – is the only place to properly legislate against benzene (and other VOC) emissions, we will have to rely on dated processes to ensure that pollutant levels do not exceed dangerous levels.

The University of Innsbruck’s insight is undoubtedly game-changing. What’s more, our poor understanding of true global VOC levels is hugely worrying. Real-time, geographically-specific data is therefore critical to future progress and legislative change – and technology will play a critical part.


Duvas Technologies relocates global headquarters

By | News

World-leading air quality monitoring specialist, Duvas Technologies, has announced the relocation of its global headquarters. The move, which positions the business for further growth, will see operations move from its existing site in Woking, to a recently-acquired facility in Banbury, Oxfordshire.

The state-of-the-art development features purpose-built areas for R&D and manufacturing, while an increase in site footprint will provide sufficient space for sales, software development, analysis and testing departments. Excellent infrastructure links will help to further expand international operations, while a close proximity to numerous universities will strengthen the company’s academic links.

Steve Billingham, CEO of Duvas, commented: “Relocating to our new site in Banbury is an important milestone in the Duvas growth journey.

“One of our long-standing goals for the business is to not only develop the talent we have in-house, but also further expand our team over time. We think this new facility is a fantastic base to achieve this!”